Fregean logics with the multiterm deduction theorem and their algebraization

نویسندگان

  • Janusz Czelakowski
  • Don Pigozzi
چکیده

A deductive system S (in the sense of Tarski) is Fregean if the relation of interderivability, relative to any given theory T , i.e., the binary relation between formulas { 〈α, β〉 : T, α `S β and T, β `S α }, is a congruence relation on the formula algebra. The multiterm deduction-detachment theorem is a natural generalization of the deduction theorem of the classical and intuitionistic propositional calculi (IPC) in which a finite system of possibly compound formulas collectively plays the role of the implication connective of IPC. We investigate the deductive structure of Fregean deductive systems with the multiterm deduction-detachment theorem within the framework of abstract algebraic logic. It is shown that each deductive system of this kind has a deductive structure very close to that of the implicational fragment of IPC. Moreover, it is algebraizable and the algebraic structure of its equivalent quasivariety is very close to that of the variety of Hilbert algebras. The equivalent quasivariety is however not in general a variety. This gives an example of a relatively point-regular, congruenceorderable, and congruence-distributive quasivariety that fails to be a variety, and provides what apparently is the first evidence of a significant difference between the multiterm deduction-detachment theorem and the more familiar form of the theorem where there is a single implication connective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substructural Logics over Fl I: Algebraization, Parametrized Local Deduction Theorem and Interpolation

Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation pro...

متن کامل

Fregean logics

According to Frege’s principle the denotation of a sentence coincides with its truthvalue. The principle is investigated within the context of abstract algebraic logic, and it is shown that taken together with the deduction theorem it characterizes intuitionistic logic in a certain strong sense. A 2nd-order matrix is an algebra together with an algebraic closed set system on its universe. A ded...

متن کامل

Nikolaos Galatos

Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation pro...

متن کامل

EQ-logics with delta connective

In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...

متن کامل

Preface: In memory of Wim Blok

algebraic logic: Full models, Frege systems, and metalogical properties he formulates an institutional analogue of the property of congruence and analyses how it helps in the preservation of other metalogical properties such as conjunction, disjunction, the deduction-detachment theorem, and two versions of reductio ad absurdum. In partial contrast, Raftery’s paper The equational definability of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Studia Logica

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2004